FACTORING STRATEGY

Is there a **GCF** (Greatest Common Factor)?
If so, factor it out first.

2 Terms

Is there a **difference of squares**?
If so, factor as

\[A^2 - B^2 = (A + B)(A - B) \]

Do you still have a **difference of squares**? Be sure to check!

If not, factor out a **GCF only**!

Never factor a sum of squares:

\[A^2 + B^2 = \text{prime} \]

3 Terms

Is there a **perfect square trinomial**?
If so, factor using one of the forms

- \[A^2 + 2AB + B^2 = (A + B)^2 \]
- \[A^2 - 2AB + B^2 = (A - B)^2 \]

4 Terms

Factor by Grouping:
1) Group the terms into two groups of two terms each.
2) Factor out a **gcf** from each group of terms.
3) Factor out the common binomial factor.
4) If none, rearrange the terms and try again.

Is the trinomial of the form \(x^2 + bx + c \)?
If so, find factors of \(c \) whose sum is \(b \) and factor as:

\[(x \, \, \,) (x \, \, \,) \]

Is the trinomial of the form \(ax^2 + bx + c \)?
If so, **factor by** grouping, scissors, division, tic-tac-toe, or trial factors.

Factor completely. Check the result by multiplying.