
# THE SLOPE OF A LINE

Consider the line containing the points (-4, -1), (0, 2) and (4, 5). When we move from the point (-4, -1) to the point (0, 2) the y-coordinate increases by 3 units; the x-coordinate increases by 4 units.

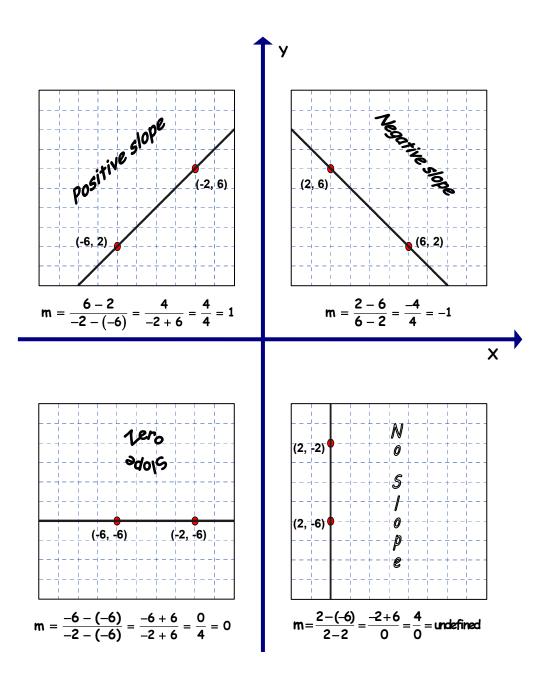


This pattern repeats when we move from the point (0, 2) to the point (4, 5). The vertical change or **rise** between any two points, such as (0, 2) and (4, 5), is the difference of the y-coordinates: 5 - 2 = 3. The horizontal change or **run** is the difference of the x-coordinates: 4 - 0 = 4. The ratio of the change in the y to the change in x is called the **slope** of the line:

slope = 
$$\frac{\text{change in y}}{\text{change in x}} = \frac{\text{rise}}{\text{run}} = \frac{5-2}{4-0} = \frac{3}{4}$$

#### Finding Slope When Two Ordered Pairs are Given

Given any two points on a line, we'll call them  $(x_1, y_1)$  and  $(x_2, y_2)$ , we can find the line's slope using the following formula:

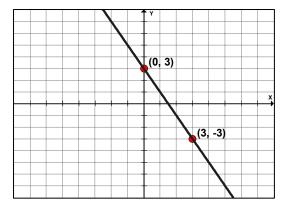

slope = m = 
$$\frac{\text{change in y}}{\text{change in x}} = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

**Example 1**: Find the slope of the line passing through the points (-6, -2) and (-2, 4).

To find the slope, let  $(x_1, y_1) = (-6, -2)$  and  $(x_2, y_2) = (-2, 4)$ . Then substitute the values for  $x_1$ ,  $y_1$  and  $x_2$ ,  $y_2$  in the formula and simplify.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - (-2)}{-2 - (-6)} = \frac{4 + 2}{-2 + 6} = \frac{6}{4} = \frac{3}{2}$$

The slope of a line determines its slant. When the slope is positive, the line slants upward; when the slope is negative the line slants downward.




Page 2 of 4

# Finding Slope When an Equation is Given

The equation y = mx + b is called the slope-intercept form of a linear equation because the **slope** is **m**, the coefficient of the x term, and the y-intercept is the point (0, b). To see this, consider the graph of the equation y = -2x + 3. The line contains the points (0, 3) and (3, -3), as the table shows.

| X | y = -2x + 3        | Y  |
|---|--------------------|----|
| 0 | y = -2(0) + 3 = 3  | 3  |
| 1 | y = -2(1) + 3 = 3  | 1  |
| 2 | y = -2(2) + 3 = -1 | -1 |
| 3 | y = -2(3) + 3 = -3 | -3 |



If we let  $(x_1, y_1) = (0, 3)$  and  $(x_2, y_2) = (3, -3)$  and substitute these values into the formula, we get:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-3 - 3}{3 - 0} = \frac{-6}{3} = -2$$

The slope m = -2 and the y-intercept = (0, 3)

If the given equation is written in the general form ax + by = c, solve the equation for y to write it in the form y = mx + b.

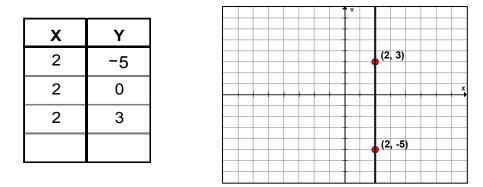
**Example 2**: Find the slope and y-intercept of the equation 4x - 3y = 12.

To find the slope and y-intercept, solve the equation for y:

$$4x - 3y = 12$$
  

$$4x - 3y - 4x = -4x + 12$$
  

$$-3y = -4x + 12$$
  


$$\frac{-3y}{-3} = \frac{-4x}{-3} + \frac{12}{-3}$$
  

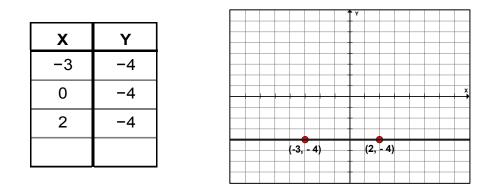
$$y = \frac{4}{3}x - 4$$

The slope  $\mathbf{m} = \frac{4}{3}$ , the coefficient of the x term and the **y-intercept** = (0, -4).

# Vertical Lines: x = a

The graph of the equation x = 2 contains the points (2, 3) and (2, -5), as the table shows.




If we let  $(x_1, y_1) = (2, 3)$  and  $(x_2, y_2) = (2, -5)$  and substitute these values into the formula we get:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-5 - 3}{2 - 2} = \frac{-8}{0} = undefined$$

In general, because the x-coordinates are the same, the slope of a vertical line x = a is always **undefined**.

# Horizontal Lines: y = b

The graph of the equation y = -4 contains the points (-3, -4) and (2, -4), as the table shows:



If we let  $(x_1, y_1) = (-3, -4)$  and  $(x_2, y_2) = (2, -4)$  and substitute these values into the formula we get:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - (-4)}{2 - (-3)} = \frac{-4 + 4}{2 + 3} = \frac{0}{5} = 0$$

In general, because the y-coordinates are the same, the slope of any horizontal line y = b is always **0**.