7

The Skeleton

Lecture Presentation by
Lori Garrett
Section 1: Axial Skeleton

Learning Outcomes

7.1 List the four major components of the axial skeleton, and describe its major functions.

7.2 Identify the bones of the cranium and face, and locate and identify the cranial sutures.

7.3 Explain the significance of the markings and locations of the anterior and posterior aspects of the facial and cranial bones.

7.4 Explain the significance of the markings and locations of the lateral and medial aspects of the facial and cranial bones.
Section 1: Axial Skeleton

Learning Outcomes (continued)

7.5 Explain the significance of the markings and locations of the inferior and interior aspects of the facial and cranial bones.

7.6 Describe and locate the bone markings of the sphenoid, ethmoid, and palatine bones.

7.7 Describe the structure of the orbital complex and nasal complex and the functions of their individual bones.

7.8 Describe the mandible and the associated bones of the skull.
Section 1: Axial Skeleton

Learning Outcomes (continued)

7.9 Describe key structural differences among the skulls of infants, children, and adults.

7.10 Identify and describe the curves of the spinal column and their functions, and identify the vertebral regions.

7.11 Describe the distinctive structural and functional characteristics of the cervical and thoracic vertebrae.

7.12 Describe the distinctive structural and functional characteristics of the lumbar vertebrae.
Section 1: Axial Skeleton

Learning Outcomes (continued)

7.13 Describe the distinctive structural and functional characteristics of the sacrum and coccyx.

7.14 Explain the significance of the articulations between the thoracic vertebrae and the ribs, and between the ribs and the sternum.
Module 7.1: The axial skeleton includes bones of the head, vertebral column, and trunk

Axial skeleton
- Forms the longitudinal axis of the body
- Components include:
 - Skull and associated bones
 - Thoracic cage
 - Vertebral column
 - Supplemental cartilages
- In total, about 80 bones
 - About 40 percent of the bones in the human body
Module 7.1: The axial skeleton

- Forms the longitudinal axis of the body
- Components include:
 - Skull and associated bones
 - Thoracic cage
 - Vertebral column
 - Supplemental cartilages
- In total, about 80 bones (40%)
Module 7.1: The axial skeleton

Axial skeleton functions

- Supports and protects brain, spinal cord, and organs in trunk body cavities
- Provides attachment sites for certain muscles that:
 - Adjust the position of the head, neck, and trunk
 - Perform respiratory movements
 - Stabilize or position parts of the appendicular skeleton that support the limbs

- Joints of the axial skeleton
 - Limited in movement but very strong
Module 7.1: Review

A. How many bones comprise the skull and its associated bones?

B. What are the primary functions of the axial skeleton?

C. Describe the general role of the muscles that attach to the axial skeleton.

Learning Outcome: List the four major components of the axial skeleton, and describe its major functions.
Module 7.2: The skull has cranial and facial components that are usually bound together by sutures

Skull bones

- 22 bones in total
 - 14 facial bones
 - 8 cranial bones form the cranium, or braincase

- 7 associated bones
 - 6 auditory ossicles
 - Located within the temporal bones (3 on each side)
 - 1 hyoid
 - Connected by ligaments to the inferior surface of the temporal bones
Module 7.2: Skull components

Skull bones
- 22 bones in total
 - 14 facial bones
 - 8 cranial bones form the cranium, or braincase
- 7 associated bones
Facial bones (14)

- Protect and support entrances to the digestive and respiratory tracts
- Provide attachment points for muscles that:
 - Control facial expression
 - Assist in manipulation of food
Module 7.2: Skull components

Cranial bones (8)

- Form the **cranium**
- Enclose the **cranial cavity**
 - Fluid-filled chamber that cushions and supports the brain
- Inner surface
 - Attachment point for blood vessels, nerves, and membranes stabilizing the position of the brain
Cranial bones (continued)

- **Outer surface**
 - Attachment point for muscles that move the eyes, jaws, and head

- **Calvaria** (skullcap)
 - Roof of the skull formed by the occipital, parietal, and frontal bones
Video: Cranial Bones
Module 7.2: Skull components

Sutures: Joints (articulations) between the skull bones of adults

- Four major sutures:
 1. **Coronal** (attaches frontal to parietal bones)
 2. **Squamous** (attaches temporal and parietal bones)
Module 7.2: Skull components

- Four major sutures (continued):
 3. **Sagittal** (attaches parietal bones)
 4. **Lambdoid** (attaches occipital to parietal bones)
 - Sutural bones may be present along this suture
Module 7.2: Review

A. Identify the bones of the cranium.
B. Describe the functions of the facial bones.
C. Define *suture*.
D. Name the sutures that mark the boundaries of each parietal bone.

Learning Outcome: Identify the bones of the cranium and face, and locate and identify the cranial sutures.
Module 7.3: Facial bones dominate the anterior aspect of the skull, and cranial bones dominate the posterior surface

Paired facial bones

- **Nasal bones**
 - Support superior portion of the bridge of the nose
 - Connected to cartilage supporting distal portions of the nose

- **Lacrimal bones**
 - Form part of medial wall of the orbit (eye socket)

- **Palatine bones**
 - Form the posterior portion of the hard palate
 - Contribute to the floor of each orbit
Module 7.3: Facial and cranial bones

Paired facial bones (continued)

- **Zygomatic bones**
 - Form part of the cheekbone
 - Contribute to the rim and lateral wall of the orbit

- **Maxillae**
 - Support the upper teeth
 - Form inferior orbital rim, the upper jaw, lateral margins of the external nares, and most of hard palate
Paired facial bones (continued)

- Inferior nasal conchae
 - Create turbulence in air entering the nasal cavity
 - Increase epithelial surface area to warm and humidify inhaled air
Module 7.3: Facial and cranial bones

Single facial bones

- **Vomer**
 - Forms the inferior portion of the bony nasal septum

- **Mandible**
 - Forms the lower jaw

- Facial bones dominate the anterior aspect of the skull
<table>
<thead>
<tr>
<th>Facial Bones</th>
<th>Cranial Bones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paired bones</td>
<td></td>
</tr>
<tr>
<td>Nasal bones</td>
<td>Parietal bone</td>
</tr>
<tr>
<td>Lacrimal bones</td>
<td>Frontal bone</td>
</tr>
<tr>
<td>Palatine bones</td>
<td>Sphenoid</td>
</tr>
<tr>
<td>Zygomatic bones</td>
<td>Ethmoid</td>
</tr>
<tr>
<td>Maxillae</td>
<td></td>
</tr>
<tr>
<td>Inferior nasal conchae</td>
<td></td>
</tr>
<tr>
<td>Single bones</td>
<td></td>
</tr>
<tr>
<td>Vomer</td>
<td></td>
</tr>
<tr>
<td>Mandible</td>
<td></td>
</tr>
</tbody>
</table>

Anterior View

© 2018 Pearson Education, Inc.
Cranial bones seen from an anterior view

- **Frontal bone**
 - Forms the anterior portion of the cranium and roof of the orbits
 - Fontal sinuses secrete mucus that helps flush the nasal cavities

- **Sphenoid bone**
 - Forms part of the floor of the cranium
 - Unites facial and cranial bones
 - Acts as a cross-brace to strengthen sides of the skull
Cranial bones seen from an anterior view (continued)

- **Ethmoid bone**
 - Forms the anteromedial floor of the cranium, the roof of the nasal cavity, and part of nasal septum and medial orbital wall
Cranial bones seen from a posterior view

- **Parietal bones**
 - Form part of the superior and lateral surfaces of the cranium

- **Occipital bone**
 - Contributes to the posterior, lateral, and inferior cranial surfaces
 - **External occipital crest**
 - Extends from the *external occipital protuberance*
 - Attachment point for ligament that helps stabilize the vertebrae of the neck
Cranial bones seen from a posterior view (continued)

- **Temporal bones**
 - Form part of the lateral wall of the cranium
 - Articulate with the mandible and facial bones
 - Surround the sense organs of the inner ear
Cranial bones seen from a posterior view (continued)

- **Temporal bones** (continued)
 - Attachment site for muscles closing the jaw and moving the head
 - **Mastoid process**
 - Attachment for muscles that rotate or extend head
 - **Styloid process**
 - Attached to ligaments supporting the hyoid bone and tendons of several muscles
Facial and cranial bones, posterior view

- **Cranial Bones**
 - Parietal bones
 - Occipital bone
 - Temporal bone
 - Mastoid process
 - Styloid process

- **Anatomical Features**
 - Sagittal suture
 - Lambdoid suture
 - Squamous suture
 - External occipital protuberance
 - External occipital crest
 - Mandible

© 2018 Pearson Education, Inc.
Module 7.3: Review

A. Identify the facial bones.

B. Identify the following bones as either a facial bone or a cranial bone: vomer, ethmoid, sphenoid, temporal, and inferior nasal conchae.

C. The mandible articulates with which other cranial bones?

D. Quincy suffers a hit to the skull that fractures the right superior lateral surface of his cranium. Which bone is fractured?

Learning Outcome: Explain the significance of the markings and locations of the anterior and posterior aspects of the facial and cranial bones.
Module 7.4: The lateral and medial aspects of the skull share many bone markings

Bone markings on the lateral aspect

- **Forehead**
 - Forms anterior, superior portion of the cranium
 - Provides attachment site for facial muscles

- **Superior and inferior temporal lines**
 - Ridges marking attachment sites of the temporalis muscle

- **Squamous part** of the temporal bone (temporal squama)
 - Convex, irregular surface bordering the squamous suture
Module 7.4: Bone markings on lateral and medial aspects of skull

Bone markings on the lateral aspect (continued)

- **External acoustic meatus**
 - Canal beginning on lateral surface of the temporal bone
 - Ends at the tympanic membrane

- **Zygomatic process of the temporal bone**
 - Articulates with the **temporal process of the zygomatic bone** to form the **zygomatic arch**
Module 7.4: Bone markings on lateral and medial aspects of skull

Bone markings on the lateral aspect (continued)

- **Mandibular angle**
 - Posterior, inferior corner of lower jaw

- **Mental protuberance** (*mentalis, chin*)
 - Attachment site for several facial muscles

- **Alveolar part** of mandible
 - Surrounds and supports lower teeth

- **Alveolar processes**
 - Projecting ridges of maxillae and mandible
 - Support the upper and lower teeth
Module 7.4: Bone markings on lateral and medial aspects of skull

Bone markings on the medial aspect

- **Frontal sinuses**
 - Hollow spaces in the bone

- **Petrous part** of the temporal bone
 - Encloses structures of the inner ear and auditory ossicles in the middle ear

- **Internal acoustic meatus**
 - Passageway for blood vessels and facial and vestibulocochlear nerves

- **Hypoglossal canal**
 - Passageway for hypoglossal nerves
Module 7.4: Review

A. Describe the alveolar process.
B. What bone processes form the zygomatic arch?
C. Name each meatus found in the temporal bone.
D. What is the function of the internal acoustic meatus?

Learning Outcome: Explain the significance of the markings and locations of the lateral and medial aspects of the facial and cranial bones.
Module 7.5: The foramina on the inferior surface of the skull mark the passageways for nerves and blood vessels

Foramina on the inferior aspect

- **Foramen lacerum** (*lacerare*, to tear)
 - Jagged slit between sphenoid and petrous portion of temporal bone
 - Contains hyaline cartilage and small arteries

- **Foramen ovale**
 - Passage for nerves innervating the jaws

- **Carotid canal**
 - Passage for the internal carotid artery
Module 7.5: Bone markings on inferior and interior aspects of skull

Foramina on the inferior aspect (continued)

- **Stylomastoid foramen**
 - Posterior to the base of the styloid process
 - Passage for facial nerve

- **Jugular foramen**
 - Located between the occipital and temporal bone
 - Passage for internal jugular vein

- **Foramen magnum**
 - Connects cranial cavity with the vertebral canal
 - Surrounds the connection between the brain and spinal cord
Module 7.5: Bone markings on inferior and interior aspects of skull

Bone markings on the inferior aspect

- **Mandibular fossa**
 - On the inferior surface of the temporal bone
 - Articulation site for temporal bone and mandible

- **Occipital condyles**
 - Articulation site between skull and first cervical vertebra

- **Inferior and superior nuchal lines**
 - Intersect at the occipital crest
 - Attachment sites for muscles and ligaments that stabilize the head over the cervical vertebrae

© 2018 Pearson Education, Inc.
Inferior view of foramina

- Zygomatic bone
- Frontal bone
- Palatine bone
- Maxilla
- Vomer
- Zygomatic arch
- Styloid process
- Mandibular fossa
- Occipital condyles
- Lambdoid suture
- Inferior and superior nuchal lines
- Occipital bone
- External occipital crest

Foramina

- Sphenoid
- Foramen lacerum
- Foramen ovale

Temporal Bone

- Carotid canal
- Stylomastoid foramen

Occipital Bone

- Jugular foramen
- Foramen magnum

© 2018 Pearson Education, Inc.
Module 7.5: Bone markings on inferior and interior aspects of skull

Bone markings on the interior aspect

- **Olfactory foramina**
 - Permit passage of olfactory nerves

- **Optic canals**
 - Permit passage of optic nerves

- **Foramen rotundum**
 - Permit passage of a branch of trigeminal nerve

- **Foramen spinosum**
 - Passage of blood vessels to CNS membranes
Module 7.5: Bone markings on inferior and interior aspects of skull

Bone markings on the interior aspect (continued)

- Hypoglossal canal
 - Passage of hypoglossal nerve

- Internal occipital crest
 - Anchors blood vessels and membranes that stabilize the position of the brain
Module 7.5: Review

A. Identify the bone containing the carotid canal, and name the structure that runs through this passageway.

B. Which foramen provides a passageway for nerves innervating the jaw?

C. In which bone is the foramen magnum located, and what is significant about this opening?

Learning Outcome: Explain the significance of the markings and locations of the inferior and interior aspects of the facial and cranial bones.
Module 7.6: The shapes and markings of the sphenoid, ethmoid, and palatine bones are best seen in the isolated bones

Sphenoid bone features

- **Optic canals**
 - Passage for optic nerves from eyes to the brain

- **Lesser wings**
 - Extend horizontally anterior to the sella turcica

- **Greater wings**
 - Extend laterally from the body
Module 7.6: The sphenoid, ethmoid, and palatine bones

Sphenoid bone features (continued)

- **Hypophyseal fossa** (pituitary fossa)
 - Depression in the sella turcica
 - Supports and protects the pituitary gland

- **Sella turcica**
 - Saddle-shaped enclosure
Module 7.6: The sphenoid, ethmoid, and palatine bones

Sphenoid bone features (continued)

- **Sphenoidal spine**
 - Projection at the posterior, lateral corner of each greater wing

- **Foramina penetrate each greater wing**
 - **Foramen spinosum** (to orbit)
 - **Foramen ovale** (to face)
 - **Foramen rotundum** (to jaws)
 - **Superior orbital fissure** (to cranial cavity membranes)
The sphenoid bone

- Superior surface of the sphenoid
- Foramen spinosum
- Foramen ovale
- Foramen rotundum
- Superior orbital fissure
- Optic canal
- Lesser wing
- Greater wing
- Hypophyseal fossa
- Sella turcica
- Sphenoidal spine
Module 7.6: The sphenoid, ethmoid, and palatine bones

Sphenoid bone features (continued)

- **Body**
 - Forms the central axis of the sphenoid

- **Sphenoidal sinuses**
 - Inferior to the sella turcica
 - Hollow spaces on either side of the body
Module 7.6: The sphenoid, ethmoid, and palatine bones

Sphenoid bone features (continued)

- Pterygoid processes
 - Vertical projections on either side of the body
 - Each forms pair of **pterygoid plates**
 - Attachment sites for muscles moving the mandible and soft palate
Module 7.6: The sphenoid, ethmoid, and palatine bones

Ethmoid bone

- Three parts
 1. **Cribriform plate** (*cribrum*, sieve)
 - Forms anteromedial cranial floor and nasal cavity roof
 - Olfactory foramina permit passage of olfactory nerves for sense of smell
 2. **Crista galli** (*crista*, crest + *gallus*, rooster; cock’s comb)
 - Bony ridge that projects superior to cribriform plate
 - Attachment point for falx cerebri (membrane that stabilizes the brain)
Module 7.6: The sphenoid, ethmoid, and palatine bones

Ethmoid bone (continued)

- Three parts (continued)
 2. Paired ethmoidal labyrinth
 - Interconnected air-filled cavities that open into the nasal cavity
 - Two sets of delicate projections
 - Superior nasal conchae
 - Middle nasal conchae
 3. Perpendicular plate
 - Forms part of the nasal septum
The ethmoid bone

- Cribiform plate
- Ethmoidal labyrinth consisting of ethmoidal cells
- Superior nasal conchae and middle nasal conchae
- Perpendicular plate
- Crista galli
- Superior surface
- Posterior surface
Palatine bone

- Forms posterior portion of the hard palate and contributes to the floor of each orbit
 - **Orbital process**
 - Forms part of the floor of the orbit
 - Contains a small sinus that usually opens into the sphenoidal sinus
 - **Horizontal plate**
 - Forms the posterior part of the hard palate
 - **Perpendicular plate**
 - Extends from the horizontal plate to the orbital process
Palatine bone

Orbital process

Perpendicular plate

Horizontal plate

Nasal crest

Anterior view of the two palatine bones
Module 7.6: Review

A. Identify the bone containing the optic canals, and cite the structures using this passageway.

B. Which bone contains the sella turcica? What structure is found within the sella turcica depression?

C. Identify the bone containing the cribriform plate. What is significant about this structure?

D. Which bone acts as a uniting bridge between cranial and facial portions of the skull?

Learning Outcome: Describe and locate the bone markings of the sphenoid, ethmoid, and palatine bones.
Module 7.7: Each orbital complex contains one eye, and the nasal complex encloses the nasal cavities

Complexes

- Collections of facial bones protecting sense organs
- Two orbital complexes
 - Form the orbits
 - Each contain an eye
- Nasal complex
 - Surrounds the nasal conchae
Module 7.7: Complexes: Orbital and nasal

Orbital complex

1. Frontal (roof)
2. Zygomatic (lateral wall)
3. Maxilla (most of the floor)
4. Lacrimal (medial wall)

4. Ethmoid (medial wall)
5. Sphenoid (posterior wall)
6. Palatine (posterior wall)
Orbital complex (continued)

- **Bony features**
 - **Lacrimal fossa**
 - Marks location of the lacrimal (tear) gland
 - **Supra-orbital margin**
 - Thickened part of frontal bone that helps protect the eye
 - **Supra-orbital notch**
 - Passageway for blood vessels to eyebrow, eyelids, and frontal sinuses
Module 7.7: Complexes: Orbital and nasal

Orbital complex (continued)

- Bony features (continued)
 - **Lacrimal sulcus**
 - Marks location of lacrimal sac
 - **Nasolacrimal canal**
 - Protects lacrimal sac and nasolacrimal duct
 - Nasolacrimal duct carries tears to nasal cavity
Orbital complex (continued)

- Bony features (continued)
 - **Infra-orbital foramen**
 - Sensory nerve path
 - **Zygomaticofacial foramen**
 - Carries sensory nerve that innervates the cheek
Nasal complex

- Paranasal sinuses
 - Lighten skull weight
 - Allow the voice to resonate
 - Provide extensive area of mucous epithelium
 - Found in the sphenoid, ethmoid, frontal bone, palatine bone, and maxillae
 - Inflammation of the sinuses is sinusitis
Nasal complex (continued)

- Includes bones that enclose the nasal cavities and **paranasal sinuses** (Air-filled chambers connected to the nasal cavities)
 - **Sphenoidal sinuses**
 - Found on either side of body of sphenoid
 - **Ethmoid air cells**
 - Secrete mucus to flush the nasal cavity surfaces
Nasal complex (continued)

- **Paranasal sinuses** (continued)
 - **Frontal sinuses**
 - Generally appear after age 6; may not develop
 - **Palatine sinuses**
 - Open into the sphenoidal sinuses
 - **Maxillary sinuses**
 - Secrete mucus to flush inferior nasal cavity surfaces
 - Largest sinuses
Sagittal section of paranasal sinuses

- **Frontal Bone**
 - Frontal sinuses

- **Ethmoid**
 - Superior nasal concha
 - Middle nasal concha

- **Sphenoid**
 - Paired sphenoidal sinuses

- **Palatine Bone**
 - Perpendicular plate
 - Horizontal plate

- **Maxilla**
 - Hard palate

- **Nasal bone**

- **Lacrimal bone**

- **Inferior nasal concha**

- **Pterygoid plates**
Module 7.7: Review

A. Identify the bones of the orbital complex.
B. What are the functions of the paranasal sinuses?
C. Name the complex—nasal, orbital, or both—where you find each of the following bones: frontal, maxilla, palatine, and nasal bones.

Learning Outcome: Describe the structure of the orbital complex and nasal complex and the functions of their individual bones.
Module 7.8: The mandible forms the lower jaw...

The mandible

- Forms the entire lower jaw
- Articulates with the mandibular fossae of the temporal bones
- Subdivided into:
 - Horizontal body
 - Ascending rami (singular, *ramus*)
Module 7.8: The mandible

Features of the mandible

- **Ramus**
 - Begins at the mandibular angle
 - Attachment site for the masseter muscle
 - **Condylar process**
 - Articulates with the temporal bone at the temporomandibular joint
 - **Mandibular notch**
 - Depression that separates the condylar and coronoid processes
 - **Coronoid process**
 - Insertion point for the temporalis muscle
Module 7.8: The mandible

Features of the mandible (continued)

- **Body**

 - Horizontal portion of the mandible

 - **Alveolar process**

 o Supports the lower teeth
Module 7.8: The mandible

Features of the mandible (continued)

- Medial surface features
 - **Mylohyoid line**
 - Marks the insertion of the mylohyoid muscle (which supports the floor of the mouth)
 - **Mandibular foramen**
 - Passageway for blood vessels and nerves supplying the lower teeth
 - **Depression marking position of submandibular salivary gland**

© 2018 Pearson Education, Inc.
Module 7.8: ...and the associated bones of the skull perform specialized functions

Associated bones of the skull

- **Hyoid bone**
 - Supports the larynx
 - **Greater horn** (greater cornu)
 - Attachment for muscles that move the tongue
 - **Lesser horn** (lesser cornu)
 - Attachment for hyoid and laryngeal ligaments

© 2018 Pearson Education, Inc.
Module 7.8: Associated bones of the skull

Associated bones of the skull (continued)

- **Auditory ossicles**
 - Located within each middle ear cavity
 - Enclosed in petrous part of the temporal bone
 - Play key role in hearing
 - Conduct vibrations from the tympanic membrane to internal ear
 - Three bones
 - Malleus
 - Incus
 - Stapes
Module 7.8: Review

A. Name the foramina of the mandible.
B. Explain why your lab partner is correct when she claims that the hyoid bone does not join directly with any other bone.
C. Describe the location and function of the auditory ossicles.

Learning Outcome: Describe the mandible and the associated bones of the skull.
Module 7.9: Fontanelles permit cranial growth in infants and small children

Fontanelles

- Allow for cranial growth to keep pace with brain growth in later fetal stages
- Ease passage of head through birth canal
- Over time, fontanelles are replaced with sutures
 - Occipital, sphenoidal, and mastoid fontanelles disappear a month or two after birth
 - All fontanelles replaced before age 5, when brain stops growing
Anterior fontanelle

- Intersection of frontal, sagittal, and coronal sutures
- Largest fontanelle
- Commonly called the “soft spot”
- Persists until about age 2
- Covers a major blood vessel
 - Pulses as heart beats
Module 7.9: Fontanelles

Sphenoidal fontanelle
- Junction of squamous and coronal sutures

Mastoid fontanelle
- Junction of squamous and lambdoid sutures

Posterior fontanelle
- Junction of lambdoid and sagittal sutures
Module 7.9: Review

A. Identify the major fontanelles.
B. What purposes do fontanelles serve?
C. Why are an infant’s facial bones so small compared with its cranium?

Learning Outcome: Describe key structural differences among the skulls of infants, children, and adults.
Module 7.10: The vertebral column has four spinal curves, and vertebrae share a basic structure that differs regionally

Vertebral column (spine) anatomy

- Composed of 26 bones
 - Separated into **vertebral regions** defined by anatomical characteristics of individual vertebrae
 - Cervical region (7 vertebrae)
 - Thoracic region (12 vertebrae)
 - Lumbar region (5 vertebrae)
 - Sacral region (sacrum)
 - Coccygeal region (coccyx, or tailbone)
- Average length in an adult is 71 cm (28 in.)
Module 7.10: The vertebral column and vertebrae

Vertebral column curvatures

- Primary curves (develop before birth)
 - Thoracic curve
 - Accommodates the thoracic organs
 - Sacral curve
 - Accommodates the abdominopelvic organs
Module 7.10: The vertebral column and vertebrae

- Secondary curves (develop after birth)
 - **Cervical curve**
 - Develops as an infant learns to lift the head
 - Balances the head on the neck
 - **Lumbar curve**
 - Balances the weight of the trunk over lower limbs
 - Develops with the ability to stand
Module 7.10: The vertebral column and vertebrae

Vertebrae

- Each consists of three basic parts
 1. **Articular processes**
 - Extend superiorly and inferiorly to articulate with adjacent vertebrae
 2. **Vertebral arch**
 - Forms posterior and lateral margins of the vertebral foramen
 3. **Vertebral body**
 - Transfers weight along the axis of the vertebral column
 4. **Vertebral foramen**
 - The opening framed by the vertebral body and the vertebral arch
The vertebral column and vertebrae

Superior view

Parts of a Vertebra

- Articular processes
- Vertebral arch
- Vertebral body

© 2018 Pearson Education, Inc.
Video: Typical Vertebra
Articulations between vertebrae

- **Articular facet**
 - Forms the joint with the adjacent vertebra

- **Superior articular processes**
 - Articulate with the inferior articular processes of a superior vertebra

- **Inferior articular processes**
 - Articulate with the superior articular processes of an inferior vertebra

© 2018 Pearson Education, Inc.
Module 7.10: The vertebral column and vertebrae

Vertebral arch components

- **Laminae**
 - Form the “roof” of the vertebral foramen

- **Pedicles**
 - Form the sides of the vertebral arch

- **Spinous process**
 - Projects posteriorly from point of fusion of the laminae

- **Transverse processes**
 - Project laterally from where pedicles join the laminae
 - Sites of muscle attachment
 - May articulate with the ribs
Parts of a vertebra

Vertebral foramen

The Vertebral Arch
- Spinous process
- Laminae
- Transverse processes
- Pedicles

Inferior view
Module 7.10: The vertebral column and vertebrae

- **The vertebral canal**
 - Formed by the vertebral foramina of successive vertebrae
 - Encloses the spinal cord

- **Intervertebral discs**
 - Pads of fibrocartilage separating the bodies of adjacent vertebrae

- **Intervertebral foramina**
 - Spaces formed between successive pedicles
 - Allow passage of nerves and blood vessels
Vertebral column

- Pedicle
- Intervertebral discs
- Intervertebral foramina
- Vertebral body
- Vertebral canal

© 2018 Pearson Education, Inc.
Vertebrae naming conventions

- In reference to a specific vertebra, capital letters designate the region (cervical, thoracic, lumbar, sacral, coccygeal)
 - *Examples:* C, T, L, S, Co
- The relative position of the vertebra within the region is indicated by a subscript number
 - 1 designates the vertebra closest to the skull
 - *Example:* C₃ = third cervical vertebra
Regional comparison of vertebral structure and function

<table>
<thead>
<tr>
<th>Regional Comparison of Vertebral Structure and Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical Vertebrae (7)</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Vertebral Body</td>
</tr>
<tr>
<td>Vertebral Foramen</td>
</tr>
<tr>
<td>Spinous Process</td>
</tr>
<tr>
<td>Transverse Processes</td>
</tr>
<tr>
<td>Functions</td>
</tr>
</tbody>
</table>
Module 7.10: Review

A. What is the importance of the secondary curves of the spine?

B. Name the major components of a typical vertebra.

C. To which part of the vertebra do the intervertebral discs attach?

Learning Outcome: Identify and describe the curves of the spinal column and their functions, and identify the vertebral regions.
Module 7.11: There are seven cervical vertebrae ...

- Seven smallest vertebrae in the vertebral column
- Extend from occipital bone to thorax
- Large vertebral foramen
 - Spinal cord here has many axons connecting to brain
- Vertebral body is small and light
 - Supports only weight of head
Module 7.11: Cervical vertebrae

- **Bifid** spinous process (notch in the tip)
- Transverse processes are short and stumpy
- **Transverse foramen**
 - Protects vertebral arteries and veins serving the brain
- **Costal processes**
 - Extend anterolaterally from either side of the body
Module 7.11: Cervical vertebrae

First two cervical vertebrae are specialized to support and stabilize the cranium and allow head movement.

1. **Atlas (C₁)** (named after Greek mythical figure holding the world on his shoulders)
 - No spinous process or vertebral body
 - Large round vertebral foramen
 - Articulates with the occipital condyles
 - Permits nodding “yes”
Module 7.11: Cervical vertebrae

2. **Axis (C₂)**
 - Prominent **dens**, or **odontoid** (*odontos*, tooth) **process**, on superior surface
 - Dens bound to atlas by transverse ligament
 - Permits rotation, as in shaking head “no”
Video: Atlas and Axis
Module 7.11: Cervical vertebrae

- **Last cervical vertebra (C₇)**
 - Also known as the *vertebra prominens*, or prominent vertebra
 - Has large spinous process ending in a tubercle
 - Can be felt through the skin
 - **Ligamentum nuchae* (nucha, nape)
 - Elastic ligament that connects the vertebra prominens to the external occipital crest
 - Acts like a bow string to maintain the cervical curvature without muscular effort
Cervical vertebrae

Vertebra prominens

C1, C2, C3, C4, C5, C6, C7
Module 7.11: … and twelve thoracic vertebrae

Thoracic vertebrae

- 12 thoracic vertebrae
- Body of each one slightly larger as they move inferiorly
 - Able to bear increasing weight
Thoracic vertebrae (continued)

- Long, slender **spinous process** that projects posteriorly and inferiorly
- Smaller vertebral foramen than cervical vertebrae
Thoracic vertebrae (continued)

- **Costal facets** on dorsolateral surface of vertebral body for rib articulation
 - $T_1 - T_{10}$ also have costal facets on the transverse processes
Video: Thoracic Vertebra
Module 7.11: Review

A. Joe suffered a hairline fracture at the base of the dens. Identify the bone and fracture site.

B. In which region of the vertebral column would you find a vertebra with a large foramen and two smaller foramina within the transverse process?

C. When you run your finger down the middle of a person’s spine, what part of each vertebra are you feeling just beneath the skin?

Learning Outcome: Describe the distinctive structural and functional characteristics of the cervical and thoracic vertebrae.
Module 7.12: There are five lumbar vertebrae

- Five lumbar vertebrae
- Largest vertebrae (transmit the most weight)
 - Thicker body than that of a thoracic vertebra
 - Superior and inferior surfaces are oval (not heart shaped)
Module 7.12: Lumbar vertebrae

Lumbar vertebrae features

- No costal facets
- Slender transverse processes
- Triangular vertebral foramen
- Stumpy spinous process
- Superior articular processes face medially
- Inferior articular processes face laterally
Video: Lumbar Vertebra
Module 7.12: Review

A. How many vertebrae are in the lumbar region of the vertebral column?
B. Why are the bodies of lumbar vertebrae so large?

Learning Outcome: Describe the distinctive structural and functional characteristics of the lumbar vertebrae.
Module 7.13: The sacrum and coccyx consist of fused vertebrae

Sacrum

- Five fused vertebrae
 - Begin fusing after puberty
 - Completely fused by age 25–30
 - Transverse lines mark former boundaries of individual vertebrae
- Protects reproductive, digestive, and urinary organs
- Attaches the axial skeleton to the appendicular skeleton
- Anterior surface concave; posterior surface convex
 - Curvature more pronounced in males than females
Module 7.13: The sacrum and the coccyx

Sacrum features

- **Base**
 - Broad, superior surface

- **Ala, or wing**
 - Extends to each side from the base

- **Sacral promontory**
 - Important landmark in female pelvic exams and in labor and delivery
Module 7.13: The sacrum and the coccyx

Sacrum features (continued)

- **Sacral foramina**
 - Intervertebral foramina of fused vertebrae

- **Apex**
 - Narrow, inferior portion
Module 7.13: The sacrum and the coccyx

Sacrum features (continued)

- **Sacral canal**
 - Passageway extending the length of the sacrum
 - Contains nerves and membranes of the spinal cord

- **Auricular surface**
 - Thickened, flattened lateral surfaces
 - Site of articulation with pelvic bones (sacro-iliac joint)
Module 7.13: The sacrum and the coccyx

Sacrum features (continued)

- **Sacral tuberosity**
 - Roughened area posterior to auricular surface
 - Attachment site of sacro-iliac joint ligaments

- **Superior articular process**
 - Articulates with last lumbar vertebra
Module 7.13: The sacrum and the coccyx

Sacrum features (continued)

- **Median sacral crest**
 - Ridge formed by fused spinous processes of sacral vertebrae

- **Lateral sacral crest**
 - Ridge from fused transverse processes of sacral vertebrae

- **Sacral hiatus**
 - Opening at inferior end of sacral canal
Module 7.13: The sacrum and the coccyx

Coccyx

- Three to five fused vertebrae
- Begin fusing about age 26
- **Coccygeal cornu**
 - Curves to meet sacral cornu superior to it
Video: Sacrum and Coccyx
Module 7.13: Review

A. Which bone of the axial skeleton joins with the hip bones of the appendicular skeleton?

B. Which regions of the vertebral column do not consist of individual vertebrae?

Learning Outcome: Describe the distinctive structural and functional characteristics of the sacrum and coccyx.
Module 7.14: The thoracic cage protects organs in the chest and provides sites for muscle attachment

Thoracic cage overview

- Provides bony support to thoracic cavity walls
- Protects heart, lungs, thymus, and other thoracic cavity organs
- Composed of thoracic vertebrae, ribs, and sternum
 - Ribs and sternum form the rib cage
- Attachment for muscles involved in:
 1. Breathing
 2. Maintaining position of the vertebral column
 3. Moving the pectoral girdles and upper limbs
Module 7.14: The thoracic cage

Sternum

1. Manubrium
 - Trapezoid-shaped superior portion

2. Body
 - Attaches to inferior surface of the manubrium

3. Xiphoid process
 - Attached to inferior portion of body
Module 7.14: The thoracic cage

Ribs

- **Vertebrosternal ribs** (ribs 1–7)
 - Connect to sternum by individual costal cartilages
 - Also called true ribs
- **Vertebrochondral ribs** (ribs 8–10)
 - Connect to sternum by shared costal cartilages

© 2018 Pearson Education, Inc.
Module 7.14: The thoracic cage

Ribs (continued)

- **Vertebral ribs** (ribs 11 and 12)
 - No connection to sternum
 - Also known as **floating ribs**
- Ribs 8–12 also called **false ribs**
Module 7.14: The thoracic cage

Ribs (continued)

- **Costal groove** on the inferior border
 - Marks path of nerves and blood vessels

- **Shaft**
 - Tubular body of the rib

- **Angle**
 - Where shaft begins curving toward sternum
Module 7.14: The thoracic cage

Ribs (continued)

- **Head or capitulum**
 - Vertebral end of the rib where rib articulates with vertebral column at specific points (*articular facets*)

- **Tubercle**
 - Contains articular facet that contacts the transverse process of a thoracic vertebra
Module 7.14: The thoracic cage

Rib articulations with a thoracic vertebra

- Ribs 2–9
 - Heads articulate with costal facets of two adjacent vertebrae
Rib articulations with a thoracic vertebra (continued)

- Ribs 1, 10, 11, and 12
 - Heads articulate with single costal facet of individual vertebrae
 - Tubercular facets of ribs 1 and 10 attach to transverse costal facets
 - No tubercular facets on ribs 11 and 12
Module 7.14: The thoracic cage

Movement of ribs

- Typical rib acts like a bucket handle held out to the side horizontally
- Pushing down moves rib inward
- Pulling up moves rib outward
- Movements affect width and depth of thoracic cage
 - Increases or decreases volume
Module 7.14: Review

A. How are vertebrosternal ribs distinguished from vertebrochondral ribs?
B. Why are ribs 11 and 12 called floating ribs?
C. Along with the ribs and sternum, what other bones make up the thoracic cage?

Learning Outcome: Explain the significance of the articulations between the thoracic vertebrae and the ribs, and between the ribs and sternum.
Section 2: Appendicular Skeleton

Learning Outcomes

7.15 List the four major components of the appendicular skeleton.

7.16 Identify the bones that form the pectoral girdles, their functions, and their superficial features.

7.17 Identify the bones of the arm and forearm, their functions, and their bone markings.

7.18 Identify the bones of the wrist and hand, and describe their locations using anatomical terminology.
Section 2: Appendicular Skeleton

Learning Outcomes (continued)

7.19 Describe the hip bones that form the pelvic girdle, their functions, and their bone markings.

7.20 Identify the bones of the pelvis.

7.21 Discuss the differences between the male and female skeletons.

7.22 Identify the bones of the thigh and leg, their functions, and their bone markings.

7.23 Identify the bones of the ankle and foot, and describe their locations using anatomical terminology.

© 2018 Pearson Education, Inc.
Module 7.15: The appendicular skeleton includes the limb bones and the pectoral and pelvic girdles

Appendicular skeleton

- Includes bones of the limbs and supporting bone girdles that connect the limbs to the trunk
Module 7.15: Review

A. How many bones are in the appendicular skeleton?

B. What is the function of the pectoral and pelvic girdles?

Learning Outcome: List the four major components of the appendicular skeleton.
Module 7.16: The pectoral girdles—the clavicles and scapulae—connect the upper limbs to the axial skeleton

Pectoral girdle, or shoulder girdle

- Joins the arms to the trunk
- Each consists of:
 - An S-shaped clavicle
 - A broad, flat scapula
Module 7.16: The pectoral girdles

Clavicle

- Originates at articulation with the superior, lateral border of the manubrium of the sternum (lateral to jugular notch)
 - Forms the **sternoclavicular joint**
 - Only articulation between pectoral girdle and the axial skeleton
 - **Sternal end** of the clavicle
 - Pyramid shaped
- Curves laterally and posteriorly then forms a posterior curve to the scapula
Module 7.16: The pectoral girdles

Clavicle (continued)

- Articulates with acromion of scapula at the clavicular notch
 - Forms the acromioclavicular joint
 - Stabilizing ligaments attach to conoid tubercle and costal tuberosity
 - Acromial end of the clavicle
 - Flatter, broader than sternal end
 - Rough inferior surface bearing lines and tubercles
The clavicle

Superior view of right clavicle

Acromial end

Conoid tubercle

Costal tuberosity

Sternal end

Inferior view of right clavicle
Module 7.16: The pectoral girdles

Scapula

- Anterior surface forms smooth, broad triangle
- Three sides (muscle attachment sites)
 - Superior border
 - Medial (vertebral) border
 - Lateral (axillary) border
Scapula (continued)

- Corners of the triangle
 - Superior angle
 - Inferior angle
 - Lateral angle (location of the glenoid cavity)

- Subscapular fossa
 - Depression on the anterior scapular surface
Module 7.16: The pectoral girdles

Scapula (continued)

- **Glenoid cavity**
 - Cup-shaped depression
 - Where scapula articulates with the humerus, forming the glenohumoral joint

![Image of scapula with labeled parts: Coracoid process, Glenoid cavity, Acromion, Lateral view of right scapula]
Module 7.16: The pectoral girdles

Scapula (continued)

- **Acromion**
 - Large process that extends laterally
 - Projects posterior and superior to the glenoid cavity
 - Continuous with the scapular spine

- **Coracoid process**
 - Projects anterior and superior to glenoid cavity
Scapula (continued)

- Posterior surface is convex with prominent ridges and processes for muscle attachment
 - **Scapular spine**
 - Ridge crossing the posterior surface of the scapular body
 - Continuous with the acromion
 - Ends at the medial border of the body
Module 7.16: The pectoral girdles

Scapula (continued)

- **Supraspinous fossa** (*supra*, above)
 - Depression superior to the scapular spine
- **Infraspinous fossa** (*infra*, below)
 - Region inferior to scapular spine
Module 7.16: Review

A. Name the bones of the pectoral girdles.
B. How would a broken clavicle affect the mobility and stability of the scapula?
C. Which bone articulates with the scapula at the glenoid cavity?
D. How are the pectoral girdles of the appendicular skeleton attached to the axial skeleton?

Learning Outcome: Identify the bones that form the pectoral girdles, their functions, and their superficial features.
Module 7.17: The humerus of the arm articulates with the radius and ulna of the forearm

Upper limb

- Consists of bones of the:
 - Arm (shoulder to elbow)
 - Humerus
 - Forearm (elbow to wrist)
 - Ulna
 - Radius
 - Wrist
 - Carpals
 - Hands
 - Metacarpals and phalanges
Module 7.17: Bones of the arm and forearm

Humerus

- Only bone in the arm (brachium)
- Shaft expands at distal end to form epicondyles
 - Provide additional surface area for muscle attachment
 - Medial epicondyle
 - Lateral epicondyle
Humerus (continued)

- **Head**
 - Proximal end that articulates with the glenoid cavity

- **Anatomical neck**
 - Marks the extent of the joint capsule

- **Surgical neck**
 - Corresponds to the metaphysis of growing bone
 - Typical site for fractures
Humerus (continued)

- **Greater tubercle**
 - Rounded projection on lateral epiphyseal surface
 - Establishes lateral contour of the shoulder

- **Lesser tubercle**
 - Smaller projection on anterior medial surface of the epiphysis
Module 7.17: Bones of the arm and forearm

Humerus (continued)

- Intertubercular sulcus
 (intertubercular groove, or bicipital groove)
 - Between the greater and lesser tubercles (both important muscle attachment sites)
 - Large tendon runs through the groove
Humerus (continued)

- **Deltoid tuberosity**
 - Large, rough elevation on the lateral humeral shaft
 - Attachment site for deltoid muscle
Humerus (continued)

- **Radial groove**
 - Crosses inferior end of deltoid tuberosity
 - Marks path of radial nerve

- **Radial fossa**
 - Shallow depression on anterior humeral surface
Humerus (continued)

- Condyle
 - Site where humerus articulates with both radius (radiohumeral joint) and ulna (humero-ulnar joint)
 - Divided into two regions:
 1. Capitulum
 - Rounded portion forming lateral surface
 - Articulates with the radius
Humerus (continued)

- Condyle (continued)

2. **Trochlea** (*trochlea*, a pulley)
 - Forms medial surface
 - Extends from **olecranon fossa** (posterior) to **coronoid fossa** (anterior)
 - These depressions accept projections of ulna
Module 7.17: Bones of the arm and forearm

Ulna and radius

- Parallel bones that support the forearm (antebrachium)
- Shafts are connected by the **interosseous membrane** of the forearm
Ulna and radius (continued)

- **Proximal radio-ulnar joint**
 - Radial notch on ulna articulates with radial head

- **Distal radio-ulnar joint**
 - Lateral surface of head of ulna articulates with ulnar notch on distal end of radius
Module 7.17: Bones of the arm and forearm

Features of the ulna

- **Olecranon**
 - Proximal end of ulna forming the point of the elbow

- **Trochlear notch**
 - Articulates with the trochlea of the humerus

- **Coronoid process**
 - Forms inferior lip of trochlear notch
 - Fits into coronoid fossa of humerus during flexion
Features of the ulna (continued)

- **Head of ulna** (ulnar head)
 - Slender, rounded distal end of the ulna

- **Ulnar styloid process**
 - Pointed projection on lateral surface of ulnar head
Module 7.17: Bones of the arm and forearm

Features of the radius

- **Radial head**
 - Disc-shaped proximal end of the radius
 - Articulates with the capitulum of humerus

- **Neck** of the radius
 - Extends from the radial head to radial tuberosity

- **Radial tuberosity**
 - Attachment site for the biceps brachii muscle
Features of the radius (continued)

- **Ulnar notch** of the radius
 - Site of articulation with the head of the ulna

- **Radial styloid process**
 - Pointed projection on the distal end of the radius
 - Helps stabilize the wrist joint
Module 7.17: Review

A. Identify the two rounded projections on either side of the elbow, and state to which bone they belong.

B. Which bone of the forearm is positioned laterally while in anatomical position?

C. Name four different bone markings associated with the proximal portion of the ulna.

Learning Outcome: Identify the bones of the arm and forearm, their functions, and their bone markings.
Module 7.18: The wrist consists of carpal bones …

Carpus, or wrist

- Eight **carpal bones** arranged in two rows
 - Proximal carpal bones
 1. **Scaphoid** (*skaphe*, boat)
 - Closest to styloid process of radius
 2. **Lunate** (*luna*, moon)
 - Articulates with the radius

© 2018 Pearson Education, Inc.
Carpus, or wrist (continued)
Proximal carpal bones (continued)

3. **Triquetrum** (*triquetrus*, three-cornered)
 - Articulates with articular disc separating the ulna from the wrist

4. **Pisiform** (*pisum*, pea)
 - Pea-shaped
 - Anterior to the triquetrum
Module 7.18: Bones of the wrist

Distal carpal bones

1. **Trapezium** *(trapezion, table)*
 - Proximal surface articulates with scaphoid

2. **Trapezoid**
 - Wedge-shaped bone medial to trapezium
 - Also articulates with the scaphoid
Module 7.18: Bones of the wrist

Distal carpal bones (continued)

3. **Capitate** *(caput, head)*
 - Largest carpal bone
 - Between the trapezoid and hamate

4. **Hamate** *(hamatum, hooked)*
 - Medial distal carpal bone
 - Prominent hook projects anteriorly
Module 7.18: ... and the hand consists of metacarpal bones and phalanges

Bones of the hand

- Metacarpal bones
 - Identified by Roman numerals I–V starting on the lateral side
 - Metacarpal I articulates with trapezium and the thumb
Bones of the hand (continued)

- **Phalanges**, or finger bones
 - Articulate with the metacarpals
 - 14 phalanges per hand
 - **Pollex** (thumb) has two phalanges (proximal and distal)
 - All other fingers have three phalanges (proximal, middle, and distal)
Module 7.18: Review

A. Name the carpal bones.
B. Define *phalanges*.
C. Bill accidentally fractures his first distal phalanx with a hammer. Which finger is broken?

Learning Outcome: Identify the bones of the wrist and hand, and describe their locations using anatomical terminology.
Module 7.19: The hip bone forms by the fusion of the ilium, ischium, and pubis

Pelvic girdle

- Composed of two hip bones, also called coxal bones or innominate (“no-name”) bones

 - Each hip bone is formed by the fusion of three bones
 1. Ilium
 2. Ischium
 3. Pubis
Module 7.19: The hip bone

Pelvic girdle (continued)

- Pubic symphysis
 - Fibrocartilage pad connecting the right and left pubic bones
Module 7.19: The hip bone

Features seen in a lateral view

- **Iliac spines** (posterior superior, posterior inferior, anterior superior, and anterior inferior)
 - Attachment sites for important muscles and ligaments

- **Gluteal lines** (anterior and posterior)
 - Attachment site for large hip muscles
Module 7.19: The hip bone

Features seen in a lateral view (continued)

- **Greater sciatic notch**
 - Passage of sciatic nerve to lower limb

- **Iliac crest**
 - Important ridge for muscle attachment
Module 7.19: The hip bone

Features seen in a lateral view (continued)

- **Ischial spine**
 - Projects superior to lesser sciatic notch
 - Marks passage of blood vessels, nerves, and small muscle

- **Ischial tuberosity**
 - Roughened projection
 - Bears body weight when seated
Module 7.19: The hip bone

Features seen in a lateral view (continued)

- **Acetabulum** (*acetabulum*, vinegar cup)
 - Concave socket formed by all three fused bones
 - Articulates with head of femur
 - Smooth, cup-shaped surface (*lunate surface*)
 - Gap in inferior portion of bony rim (*acetabular notch*)
Module 7.19: The hip bone

Features seen in a medial view

- **Iliac fossa**
 - Shallow depression
 - Helps support abdominal organs
 - Provides area for muscle attachment

- **Pectineal line**
 - Ridge that ends in *pubic tubercle* (small, elevated area anterior and lateral to the pubic symphysis)
Module 7.19: The hip bone

Features seen in a medial view (continued)

- **Arcuate line of the ilium**
 - Continuous with the pectineal line of the pubis
 - **Auricular surface** of the ilium
 - Articulates with auricular surface of the sacrum at the sacro-iliac joint
Features seen in a medial view (continued)

- **Iliac tuberosity**
 - Roughened area superior to the auricular surface
 - Ligaments from here stabilize sacro-iliac joint
Module 7.19: The hip bone

Features seen in a medial view (continued)

- ** Obturator foramen
 - Space that is closed by sheet of collagen fibers
 - Inner and outer surfaces provide base for muscle attachment
 - Bounded by the *ischial ramus*, *inferior pubic ramus*, and *superior pubic ramus*
Module 7.19: Review

A. Which three bones fuse to make up a hip bone?
B. Describe the acetabulum.
C. When you are seated, which part of the hip bone bears your body’s weight?
D. Which bones articulate at the sacro-iliac joint?

Learning Outcome: Describe the hip bones that form the pelvic girdle, their functions, and their bone markings.
Module 7.20: The pelvis consists of the two hip bones, the sacrum, and the coccyx

Pelvis

- Contains bones of the:
 - Axial skeleton (sacrum and coccyx)
 - Appendicular skeleton (hip bones)
- Extensive network of ligaments connect sacrum with:
 - Iliac crest
 - Ischial tuberosity
 - Ischial spine
 - Arcuate line
Module 7.20: The pelvis consists of the two hip bones, the sacrum, and the coccyx

Pelvis (continued)

- Other ligaments connect the ilia to the lumbar vertebrae
- **Sacro-iliac joint**
 - Articulation between sacrum and adjacent ilium
The pelvis

Sacrum

Coccyx

Hip Bone
- Ilium
- Pubis
- Ischium

Iliac crest

Sacroiliac joint

L5

Iliac fossa

Ilium

Sacrum

Acetabulum

Pubic tubercle

Obturator foramen

Ischium

Public symphysis

Anterior view

© 2018 Pearson Education, Inc.
Module 7.20: The pelvis

Divisions of the pelvis

1. **True** (lesser) **pelvis**
 - Encloses the pelvic cavity
 - Superior limit is called **pelvic brim**
 - Encloses an opening called the **pelvic inlet**
 - **Pelvic outlet**
 - Opening bounded by coccyx, ischial tuberosities, ischial spines, and inferior pubic symphysis
Module 7.20: The pelvis

Divisions of the pelvis (continued)

2. **False** (greater) pelvis
 - Consists of area enclosed by bladelike portions of ilia superior to pelvic brim
Module 7.20: Review

A. Name the bones of the pelvis.

B. The pubic bones are joined anteriorly by what structure?

Learning Outcome: Identify the bones of the pelvis.
Module 7.21: The adult male and female skeletons have significant differences

Female skull compared to male skull
- Female skull 10% smaller; lighter and smoother
- Female forehead more vertical
- Female sinuses, teeth, and mandible smaller
Module 7.21: The male and female skeletons

Female pelvis compared to male pelvis

- Differences due to variations in body size and muscle mass
- Female pelvis is smaller, lighter, and with less prominent markings
- Adaptations for childbearing
 - Enlarged pelvic outlet
 - Broader pubic angle (greater than 100°)
 - Less curvature on sacrum and coccyx
 - Wider, more circular pelvic inlet
 - Broad, shallow pelvis
 - Ilia project farther laterally but not as far superiorly
Module 7.21: The male and female skeletons

<table>
<thead>
<tr>
<th>MALE</th>
<th>PELVIS</th>
<th>FEMALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrow, rougher, more robust</td>
<td>General appearance</td>
<td>Broader, smoother, less robust</td>
</tr>
<tr>
<td>More vertical; extends further superior to sacro-iliac joint</td>
<td>Illium</td>
<td>Illium</td>
</tr>
<tr>
<td>Long, narrow triangle with pronounced sacral curvature</td>
<td>Sacrum</td>
<td>Broader, short triangle with less</td>
</tr>
<tr>
<td>Deeper</td>
<td>Iliac fossa</td>
<td>Shallower</td>
</tr>
<tr>
<td>Narrow, heart shaped</td>
<td>Pelvic inlet</td>
<td>Open, circular shaped</td>
</tr>
<tr>
<td>Pelvic outlet</td>
<td>Coccyx</td>
<td>Wide</td>
</tr>
<tr>
<td>Points anteriorly</td>
<td>Acetabulum</td>
<td>Points inferiorly</td>
</tr>
<tr>
<td>Directed laterally</td>
<td>Obturator foramen</td>
<td>Faces slightly anteriorly</td>
</tr>
<tr>
<td>Oval</td>
<td>Pubic angle</td>
<td>Triangular</td>
</tr>
<tr>
<td>< 90°</td>
<td></td>
<td>≥100°</td>
</tr>
</tbody>
</table>
A. How does the female skull differ from the male skull?

Learning Outcome: Discuss the differences between the male and female skeletons.
Module 7.22: The femur, tibia, and patella meet at the knee

Lower limb

- Transfers the body weight to the ground
- Consists of bones of the:
 - Thigh (proximal portion of the limb)
 - Femur
 - Leg (distal portion of the limb)
 - Tibia and fibula
 - Connected by the interosseous membrane
 - Kneecap—patella
 - Ankle—tarsals
 - Foot—metatarsals and phalanges
Module 7.22: Bones of the Lower Limb

Femur

- Longest and heaviest bone in the body
 - Femoral head
 - Articulates with the pelvis at the acetabulum
 - Fovea capitis
 - Small pit in the center of the femoral head
 - Attaches the acetabulum to the femur
Module 7.22: Bones of the lower limb

Femur (continued)

- **Neck** of the femur
 - Joins head to the **shaft** at about 125°

- **Greater trochanter**
 - Large, rough projection extending laterally from head and shaft junction
 - Attachment site for large tendons
Module 7.22: Bones of the lower limb

Femur (continued)

- **Lesser trochanter**
 - Smaller projection extending posteriorly and medially
- **Intertrochanteric line**
 - Marks the edge of the articular capsule on the anterior surface
Module 7.22: Bones of the lower limb

Femur (continued)

- **Gluteal tuberosity**
 - Attachment site for gluteus maximus muscle

- **Linea aspera**
 - Attachment site for powerful hip muscles
Module 7.22: Bones of the lower limb

Femur (continued)

- **Popliteal surface** (*poples*, hollow of knee)
 - Flattened triangular area on posterior surface
Module 7.22: Bones of the lower limb

Femur (continued)

- **Medial and lateral condyles**
 - Part of the knee joint at distal end of femur
 - Separated by:
 - **Patellar surface** (anterior)
 - Smooth surface on which patella glides
 - **Intercondylar fossa** (posterior)
Module 7.22: Bones of the lower limb

Patella

- Large sesamoid bone that forms in the quadriceps tendon
 - **Base**
 - Attachment area for quadriceps tendon
 - **Apex**
 - Attachment area for patellar ligament (connects patella to tibia)
Patella (continued)

- **Lateral facet**
 - For lateral condyle of femur

- **Medial facet**
 - For medial condyle of femur
Tibia (shinbone)

- Large medial bone of leg
 - **Intercondylar eminence**
 - Ridge separating the **medial** and **lateral tibial condyles**
 - **Tibial tuberosity**
 - Attachment site of the patellar ligament
 - **Anterior margin**
 - Ridge beginning at tibial tuberosity, extending along anterior surface
Tibia (shinbone) (continued)

- **Medial malleolus** (*malleolus*, hammer)
 - Medial projection of ankle that provides medial support for the ankle joint
Module 7.22: Bones of the lower limb

Fibula

- Small, slender bone
- Does not participate in knee joint; does not bear weight
- Site of attachment for muscles of foot and toes
- **Head** of the fibula
 - Articulates with the tibia
- **Lateral malleolus**
 - Distal tip that extends lateral to the ankle
 - Provides lateral stability to the ankle
Module 7.22: Review

A. Identify the bones of the lower limb.
B. Which structure articulates with the acetabulum?
C. Identify the sesamoid bone of the lower limb.
D. The fibula neither participates in the knee joint nor bears weight. Yet when it is fractured, walking becomes difficult. Why?

Learning Outcome: Identify the bones of the thigh and leg, their functions, and their bone markings.
Module 7.23: The ankle and foot consist of tarsal bones, metatarsal bones, and phalanges

Functions of the ankle and foot bones

- Ankle bones accept the body weight from the leg
- Transfer that weight to the ground
- Distribute the weight through the foot bones
- Ankle and foot bones together:
 - Must be both strong and flexible to carry weight and deal with changes in distribution of that weight with various motions (walking, running, jumping)
The ankle (tarsus)

- Consists of seven tarsal bones

1. **Calcaneus** (heel bone)
 - Body weight is transmitted from the talus to the calcaneus to the ground
 - Rough, knob-shaped projection on posterior portion for attachment of the calcaneal tendon (Achilles tendon)
2. **Talus**
 - Transmits body weight from tibia toward the toes
 - **Trochlea**
 - Spool- or pulley-shaped articular process between tibia and talus
The ankle (continued)

3. **Navicular**
 - Articulates with the talus and cuneiform bones
 - On medial side of the ankle

4. **Cuboid**
 - Articulates with the anterior surface of the calcaneus
The ankle (continued)

5–7. Cuneiform bones

- Arranged in a row
- Named according to their relative position (medial, intermediate, and lateral)
Module 7.23: Bones of the ankle and foot

Metatarsals

- Identified by Roman numerals I–V from medial to lateral (metatarsal I articulates with hallux, or great toe)
 - I–III articulate with the cuneiform bones
 - IV and V articulate with the cuboid
Phalanges (toe bones)

- Same anatomical organization as fingers (14 bones)
 - Hallux (great toe) has two bones (proximal and distal)
 - All other toes have three bones (proximal, middle, distal)
Module 7.23: Bones of the ankle and foot

Arches of the foot

- **Longitudinal arch**
 - Formed from the ligaments and tendons connecting calcaneus to distal part of metatarsal bones
 - Allows for weight transfer (amount depends on position of foot and placement of weight)
Arches of the foot (continued)

- **Longitudinal arch** (continued)
 - Lateral (calcaneal) portion less elastic, so has much less curvature than medial (talar) portion
 - Result of difference is an elevated medial plantar surface
 - Allows room for inferior surface muscles, blood vessels, and nerves
Arches of the foot (continued)

- **Transverse arch**
 - Formed from the change in the degree of longitudinal curvature from medial to lateral border
Dancer’s fracture

- Fracture of the fifth metatarsal
- Usually occurs while body weight is supported by the longitudinal arch (as in ballet dancing)
Module 7.23: Review

A. Identify the tarsal bones.

B. Which foot bone transmits the weight of the body from the tibia toward the toes?

C. Ten-year-old Joey jumps off the back porch, lands on his right heel, and breaks his foot. Which foot bone is likely broken?

Learning Outcome: Identify the bones of the ankle and foot, and describe their locations using anatomical terminology.