Tests signature and methods	Test	Series	Conditions of Convergence	Conditions of Divergence
See if the Limit can be taken	nth-Term	∞ ∑a _n n=1		lim a _n ≠0 n→∞
See if the radius can be extracted from the series	Geometric Series	∞ ∑ar ⁿ n=0	r < 1	r ≥1
See if a partial fraction can be applied (b1-b2). *note STOP when this happens (b1-b2)	Telescoping Series	$\sum_{n=1}^{\infty} (b_n - b_{n+1})$	lim b _n =L n→∞	
"n" to the power of p must be alone in the denominator and there must be a number in the numerator.	p-Series	∞ ∑ 1/n ^p n=1	P > 1	0 < p ≤ 1
(-1) ⁿ , sin(πn/2), cos(πn) If the test fails, the nth term test will take over and the series will diverge.	Alternating Series	$\sum_{n=1}^{\infty} (-1)^{n-1} a_n$	$\begin{array}{l} 0 < a_{n+1} \leq a_n \\ \text{and lim } a_n = 0 \\ n \rightarrow \infty \end{array}$	
See if the series can be integrated. Note: ∂ _n must be 1. Decreasing 2. Positive 3. Continues as n→∞	Integral	∞ ∑an n=1	∞ ∫ f(x) dx converges 1	∞ ∫f(x) dx diverges 1
Look for to see if a _n can be raised to the n th power	Root	∞ ∑an n=1	lim √ <u>†an†</u> < 1 n→∞	$\lim_{n \to \infty} \sqrt[n]{a_n} > 1 \text{ or } \infty$
Factorial (!), a number raised to the n th power example (2 ⁿ)	Ratio	∞ ∑an n=1	lim a _{n+1} /a _n <1 n→∞	lim a _{n+1} /a _n >1 or n→∞
a_n will be given, you should create a b_n " series greater than what was given & it must converge. If it does not, try to create a series that is less than a_n and it should diverge. *note* the bigger is bottom function the smaller is the function. Hint: P-series, and Geometric are your target	Direct Comparison	∞ ∑an n=1	O <a<sub>n≤b_n and ∞ ∑bn converges n=1</a<sub>	0 <b<sub>n≤a_n and ∞ ∑b_n diverges n=1</b<sub>
$b_n=1/(n)$ (difference of the two highest powers of n) If b_n converges then a_n converges and if b_n diverges then a_n diverges	Limit Comparison	∞ ∑an n=1	$\begin{array}{ll} \lim_{n \to \infty} a_n / b_n = L > 0 \\ n \to \infty & \\ \infty & and \\ \sum b_n \text{ converges} \\ n=1 & \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Note: Table for series taken from the Calculus by Larson book