Hypothesis Test Statistics and Confidence Intervals

1 - \(\alpha \) Confidence Interval

Point Estimate \(\pm \) Maximum Error \(E \)

Hypothesis Test Value (Statistic)

NULL Hypothesis: Use the statement containing the condition of equality either directly or implied, as the null hypothesis \(H_0 \).

Single Population

(TI-84)

One Sample for mean \(\mu \) (\(\sigma \) is known)

\[
\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}
\]

Use the Normal \(Z \)-Table for the critical value \(Z \)

\[
z = \frac{\bar{x} - \mu}{\sigma/\sqrt{n}}
\]

One Sample for mean \(\mu \) (\(\sigma \) is unknown)

\[
\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}
\]

Use the \(t \)-distribution Table for the critical value \(t \)

\[
t = \frac{\bar{x} - \mu}{s/\sqrt{n}}
\]

(ZInterval)

One Sample for Proportion \(p \)

\[
\hat{p} \pm z_{\alpha/2} \sqrt{\frac{pq}{n}}
\]

Use the Normal \(Z \)-Table for the critical value \(Z \)

\[
z = \frac{\hat{p} - p}{\sqrt{pq/n}}
\]

(TI-84)

Dual Population

(TI-84)

Dependent Paired for \(\mu_d \)

\[
d \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}
\]

Use the \(t \)-distribution Table for the critical value \(t \)

\[
t = \frac{\bar{d} - \mu_d}{s_d/\sqrt{n}}
\]

Use \(H_0 : \mu_d = 0 \)

(2-SampZTest)

Two Independent Samples for \(\mu_1 - \mu_2 \) (\(\sigma_1, \sigma_2 \) are known)

\[
(x_1 - x_2) \pm z_{\alpha/2} \frac{\sigma_1^2 + \sigma_2^2}{n_1/n_2}
\]

Use the Normal \(Z \)-Table for the critical value \(Z \)

\[
z = \frac{(x_1 - x_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}
\]

Use \(H_0 : \mu_1 - \mu_2 = 0 \)

(2-SampTTest)

Two Independent Samples for \(\mu_1 - \mu_2 \) (\(\sigma_1, \sigma_2 \) are unknown)

\[
(x_1 - x_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}
\]

\[
df = \text{smaller of } n_1 - 1 \text{ or } n_2 - 1\]

Use the \(t \)-distribution Table for the critical value \(t \)

Use \(H_0 : \mu_1 - \mu_2 = 0 \)

(2-SampTTest)

Two Independent Samples for Proportions \(p_1 - p_2 \)

\[
(p_1 - p_2) \pm \frac{z_{\alpha/2} \sqrt{pq}}{\sqrt{n_1} + \sqrt{n_2}}
\]

Use the Normal \(Z \)-Table for the critical value \(Z \)

\[
z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{pq}{n_1} + \frac{pq}{n_2}}}
\]

Use \(H_0 : p_1 - p_2 = 0 \)

(2-PropZTest)

Sample Size Determination

For Mean \(\mu \)

\[
n = \frac{z_{\alpha/2}^2 \sigma^2}{E^2} = \left(\frac{z_{\alpha/2} \sigma}{E} \right)^2
\]

(round up)

For Proportion \(p \)

\[
n = \frac{z_{\alpha/2}^2 pq}{E^2} \quad \text{or use} \quad n = \frac{z_{\alpha/2}^2(.25)}{E^2}
\]

(if \(p, q \) unknown)

Handout created by Professor Jahn on 3/01/00 and updated by Ms. Neginsky on 1/26/18
Hypothesis Testing Steps

1) Set up H₀ and H₁.
H₀: Use the "≤" or "≠" or "≥" indicate inequality, etc.
H₁: Use the "<", "≠", ">", or "<" indicate equality, dependence, etc. (Label the Claim)

2) Determine the critical number(s)
When α is known, refer to the Z-table. Also, use the Z-table for proportions. When n is NOT known (and α is given), use the Table. For others (Chi-square, regression, F-dist, ANOVA, etc.) refer to the proper table or method.

3) Draw a curve and plot the critical number(s).
Label the "Fail to Reject H₀ Zone" and, label and shade the "Reject H₀ Zone"

4) Determine the test statistic - see the applicable formula sheet, and plot it.

5) Reject H₀ or Fail to Reject H₀
1) Reject if the test statistic is in the Critical Zone or
2) Using p-values, Reject if α ≥ p-value or Fail to reject if p-value ≤ α

6) Write the final conclusion (see the flowchart below)

Confidence Interval Steps:

1) Find the critical Z, or t
When α is known, refer to the Z-table. Also, use the Z-table for proportions.
When α is NOT known (and S is given), use the Student's-t table. For others, refer to the proper table or method.

2) Calculate the Maximum Error (see formulas – reverse page)

3) The Interval is:
Point Est. ± Max. Error

Hypothesis Testing using p-Values:

Left tail: Area to the left of the test statistic
Right tail: Area to the right of the test statistic
Two tail: If Test Stat to left of center:
Twice the area to the left of the test statistic
If Test Stat to right of center:
Twice the area to the right of the test statistic
(To find the areas, use the "Strategies to Find Areas")
Reject H₀ if, p ≤ α
Fail to Reject H₀ if, p > α