ALGEBRAIC EXPRESSIONS

An algebraic expression is a collection of numbers and variables separated by operation signs and grouping symbols. Examples of algebraic expressions include:

\[-2, \quad -x, \quad 3y + 5, \quad x - y + z, \quad \text{and} \quad 2x - y^2\]

In the expression "3y + 5," 3y and 5 are called the terms of the expression; 3y is called the variable term; 5 is called the constant term. Variable terms have two parts – a numerical part (the number), called the coefficient, and a literal part (the letter or variable). The term 3y is read "3 times y." Similarly, the expression "−x" is read "−1 • times x."

To evaluate an algebraic expression,

Step 1: Substitute the given values for the variables into the expression. Use parentheses or brackets to substitute negative numbers! Be careful to keep the operations that are in the original problem.

Step 2: Simplify the expression by following the Order of Operations:

- Parentheses – perform all operations inside parentheses, brackets and absolute value symbols.
- Exponents – evaluate any expressions with exponents.
- Multiply/Divide – do all multiplications and divisions as they appear, in order from left to right.
- Add/Subtract – do all additions and subtractions as they appear, in order from left to right.

EXAMPLE 1: Evaluate $2x^2 - 5xy - y^3$ for $x = -3$ and $y = -2$

To evaluate the expression, substitute the values for x and y, and then simplify using the order of operations.

\[
2(-3)^2 - 5(-3)(-2) - (-2)^3 = 2(9) - 5(-3)(-2) - (-8) = 18 + 15(2) + 8 = 18 - 30 + 8 = -12 + 8 = -4
\]

EXAMPLE 2: Evaluate $3| x + y |^2$ for $x = 5$ and $y = -10$

In the order of operations, absolute value has the same priority as parentheses.

\[
3| x + y |^2 = 3| 5 + (-10) |^2 = 3| -5 |^2 = 3(5)^2 = 3(25) = 75
\]
EXAMPLE 3: Evaluate \(\frac{10x - 5y}{x + y} \) for \(x = -4 \) and \(b = -2 \)

Substitute the values for \(x \) and \(y \). Then simplify the numerators and denominators using the order of operations.

\[
\frac{10x - 5y}{x + y} = \frac{10(-4) - 5(-2)}{(-4) + (-2)} \quad \text{← multiply left to right}
\]

\[
= \frac{-40 + 10}{-6} \quad \text{← combine -4 and -2}
\]

\[
= \frac{-30}{-6} = 5 \quad \text{← divide}
\]

To simplify an algebraic expression,

Step 1: Use the distributive law to remove parentheses and grouping symbols.

Step 2: Combine like terms. Like terms have the same variables raised to the same powers.

EXAMPLE 1: Simplify \(6x - 7 - 4(2x - 5) \)

Solution: Begin by removing the parentheses. Then combine like terms.

\[
6x - 7 - 4(2x - 5) = \quad \text{← distribute -4}
\]

\[
= 6x - 7 - 8x + 20 \quad \text{← combine like terms}
\]

\[
= -2x + 13 \quad \text{← done!}
\]

EXAMPLE 2: Simplify \(-5(10r + 4) + 8(2r - 3) \)

Solution: Remove each set of parentheses by distributing left to right. Then combine.

\[
-5(10r + 5) + 8(2r - 3) = \quad \text{← distribute -5 and 8}
\]

\[
= -50r - 25 + 16r - 24 \quad \text{← combine like terms}
\]

\[
= -34r - 49 \quad \text{← done}
\]

EXAMPLE 3: Simplify \(2x - 3[5x - 2(6 - x)] \)

Solution: To simplify expressions with nested parentheses, begin by simplifying the innermost set.

\[
2x - 3\left[5x - 2(6 - x)\right] = \quad \text{← distribute -2}
\]

\[
= 2x - 3[5x - 12 + 2x] \quad \text{← combine 5x and 2x}
\]

\[
= 2x - 3[7x - 12] \quad \text{← distribute -3}
\]

\[
= 2x - 21x + 36 \quad \text{← combine 2x and -21x}
\]

\[
= -19x + 36 \quad \text{← done!}
\]